Red cat の数学よもやま話・新装開店

はてなダイアリー「Red cat の数学よもやま話」から徐々にこちらに移行していきます。

母関数を用いた種々の技法(その 2)

は Fibonacci 数の漸化式である. ここで第 3 の式の両辺に を掛けて についての和を取ると となるが, であることから, とおくと となり, このことから が求まる. 級数展開すると となるので がわかるのだが, これだけではどうと言うこともないので, 次の記事…

母関数を用いた種々の技法(その 1)

なる漸化式を見たとき, 数学が得意な方であればこれが であることはすぐにわかると思う. しかし, ここでは母関数を用いた解法を紹介したい.上の式は一行で書くと となる. 系列 の指数母関数 を考えると 故, が求まる. 従って である.これは簡単な例であるが,…

Bernoulli 数の指数母関数

二つの系列 のそれぞれの指数母関数を とするとき, は系列 の指数母関数になる. これをたたみ込みと言う.さて, Bernoulli 数 を で定義する*1. を に置き換えて両辺に を加えると である. 系列 の指数母関数を とするとき, 上式の左辺は と定数系列 のたたみ…

二項係数に関する関係式(補足)

二項係数に関する関係式 - Red cat の数学よもやま話・新装開店 の補足記事. mathneko.hatenablog.com補題. のとき ただし は第 2 種 Stirling 数. (証明) のときは により成り立つ. よって補題は帰納的に成り立つ.命題 1. のとき (証明) ただし は下降階乗…

席替えの数理(その 4・最終回)

さて, 6 割強の確率で前回と同じ座席に座る人が出る席替えであるが, 実際のところ, 「前回と同じ座席に座る人の数」の期待値や分散はどのようになっているのだろうか. これを確率変数 とすると である. 故に だから すなわち期待値も分散も によらず になる.…

席替えの数理(その 3)

のもう一つの求め方.今, 座席に の番号を付け, 元々 番の座席に座っていた生徒を とする. 番の座席に が座るとして 番の座席に が座るとき, 残りの 人が前と違う座席に座る場合の数が 通り, 番の座席に が座らないとき, 人が前と違う座席に座る場合の数が 通…

席替えの数理(その 2)

前回証明なしで使った反転公式 の証明.さて, は が大きくなると急速に に収束する. 従って, が十分大きいとき, 席替えで全員が異なる座席に座る確率はだいたい 36.8% 程度である. 裏を返せば, 6 割強の確率で, 不幸(?)にして前と同じ座席に座る人が出ること…

席替えの数理(その 1)

人のクラスで席替えを行う. このとき, ちょうど 人が前と同じ座席になるような場合の数を としよう. すぐにわかることとして, 奇跡的にも全員が同じ座席になるような場合の数は 1 通りしかない. すなわち である. また, ちょうど 人だけが同じ座席になるとい…

二項係数に関する関係式

の両辺に ( は についての微分作用素)を 回作用させて を代入すると左辺は のとき , のとき となるので が成り立つ. これを利用すると 参考サイト : 私的数学塾 (「私の備忘録」→「代数学分野」→「二項係数の性質」)

コンパクト集合の共通部分がコンパクトでない例

に開集合系として を定めて位相空間とする. 開区間 とする. このとき とおくと は のコンパクト集合であるが, はコンパクトではない.

小学生が解きます

まずはこの写真を見てほしい.多分高校生がこれを見たら何も考えずにこう解くだろう.これは底辺が , 高さが の三角形なので .でも待ってほしい, これ, 中学入試です. つまり解くのは小学生です. 三角関数なんか知ってるわけがありません.じゃあどう解くの ? …

積分の変形

面白い問題見つけたので解いてみた. を示せ. って問題で, 「数学的帰納法を使われるのは気分が悪い」って言ってたから使わないでやってみた. ここで だから結論を得る.

ある級数の和(後編)

さて … (1) の両辺を 倍すると を得る. これを の級数展開を利用して分解すると となる. ここで の符号は「 を素因数分解したとき 型の素因数が偶数個ならプラス, 奇数個ならマイナス」で決定する. また, (1) の両辺を 倍すると を得るので, 同様に展開して …

ある級数の和(前編)

という級数を考える. この級数は無限積表示 を持つ. ここでこの無限積表示は奇素数 に対する すべてについての積であり, 複号のところは が 型ならプラス, 型ならマイナスとする.書き方を変えると である. とすれば … (1) である. 一方 zeta function の無限…

事前確率と事後確率

Twitter より引用. 産まれてくる子供が、男なら90%の確率で「男」、女なら70%の確率で「女」 と診断されるとしましょう。 Aさんの子供は「男」、Bさんの子供は「女」と診断されたとき、AさんのほうがBさんより確証が持てそうに見えますが、実は逆です! なぜ…

独立な確率変数の和の分布

簡単のため, 連続型の確率変数を考える. すなわち, 分布が連続関数 による重み付き測度 であるようなものだけを考える.独立な確率変数 があるとき, と もまた独立である. の分布を , の分布を とするとき, の同時分布は である. ここで と変数変換すると で…

単連結でない空間上の微分形式(おまけ ?)

と は前回のままとする。 は同相写像. ただし .この同相写像で 上の微分形式 を引き戻すと となる.ところが, 上連続(!)な関数 を取ると と書けるので, コホモロジー的には と同値なものである.事実 なので, が の生成元であるという事実とも合致する.

単連結でない空間上の微分形式

とおく. これは単連結でなく, を変位レトラクトに持つ. 変位ホモトピーは で与えられる.さて 上の微分形式 を考える. とおくと なので は閉形式.一方で, 上で連続な関数 で を満たすものは取れない. 一見, とおくと であるが, は 上で連続でない*1ので であ…

完全微分形式の話

珍しく幾何の話題を. の領域 上の一次微分形式 について である. したがって であれば は閉形式であるが, が領域であることにより, 既知の通りこのとき となる が存在するので, は完全形式でもある. これは de Rham コホモロジー的には と同じことである.

数学問題 bot の問題から

Twitter の数学問題 bot が出題する問題から一題拝借. をなめらかな関数とし, とおく. は の 階導関数. このとき を示せ, という問題であるが, これは のとき なので*1, この式で とおけばよい. *1:大雑把にしか計算してないがたぶん大丈夫

本当に難しい三次方程式の話(その 3・最終回)

お話の最後にちょっと面白い事実を紹介しよう. を の任意の元*1とするとき が成り立つことが確かめられる. 二次方程式のときと同じく根の順列が入れ替わり, しかもその入れ替わり方と に作用させる の元との因果関係がはっきりと見て取れる. 二次方程式のと…

本当に難しい三次方程式の話(その 2.5)

ちょっとおまけとして, 特殊な場合の三次方程式の Galois 群を考えてみよう. の場合 このとき は既約でないから の 上の最小多項式にはならない. 一般に最小多項式は であって は高々 3 次拡大である. したがって, の値によって Galois 群は ないし単位群に…

本当に難しい三次方程式の話(その 2)

さて, が生成するところの の部分群である 3 次交代群 は を(したがって も)動かさない. ということは は に対応する不変体であり, 拡大 の次数は の位数であるところの 3 に等しい. しかるに拡大 の次数は, となるのだが, あいにくと である. しかし と、 …

本当に難しい三次方程式の話(その 1)

何でたかが二次方程式をそこまで小難しくやったのかというと, 実は今日から数回にわたってお話する三次方程式の議論のための伏線でありました. だからここからが本題です.我々は Tschirnhaus 変換によって三次方程式は の形のものだけを考えればよいことがわ…

小難しい二次方程式の話(その 3・最終回)

さて, を根とするような 係数のもっとも次数の低い方程式を考えてみよう. もうネタはほぼバレバレなので と書くことにする. すると を根とする 係数のもっとも次数の低い方程式は言うまでもなく である. そしてこの方程式は と を根に持つ. と は軛(くびき)…

小難しい二次方程式の話(その 2)

さて, 少々天下り感があるが, 係数の有理関数 を考えよう. すると簡単な計算で がわかるから とおける. そして と因数分解できるが は の元であるから は 上で因数分解できたことになる. すなわち は の分解体である ! (続く)

小難しい二次方程式の話(その 1)

先日紹介した「数学ガール/ガロア理論」でも述べられている通り, 代数方程式と体の拡大と対称群には深い関わりがある. そこで今回は二次方程式を例にとって, 敢えて中学生でも知っている二次方程式の解の公式を小難しく書いて大人チックな読み物にしてみよう…

12 の魅力

「数学ガール/ガロア理論」第 4 章において、1 の原始 12 乗根と円分多項式の話題が取り上げられている。読者の方の中には「何故 12 なのか ?」と思われた方がいるかもしれない。答は「12 が約数の数が豊富である」ことによる。たとえば 8 や 10 なら 12 よ…

定積分の問題(これで最後のおまけの続き)

同じことであるが として を示す. とすれば は正則. 故に円周 を に取るとき に注意して の実部を取るために を計算すると であるから が示された.参考書籍 : 高木貞治「解析概論 改訂第三版」(岩波書店)解析概論 (1961年)作者: 高木貞治出版社/メーカー: 岩…

定積分の問題(おまけ)

が成り立つ. 以下証明.参考サイト http://suseum.jp/gq/question/745 とおくと は二次方程式 の解であるから を 倍して さらに とおくと で 故に であるから を示せばよいことになる. また続く.